• Home
  • News
  • Coins2Day 500
  • Tech
  • Finance
  • Leadership
  • Lifestyle
  • Rankings
  • Multimedia
HealthDigital Health

Scientists Just Found a Novel, Cheap Way to Use CRISPR Gene Editing to Fight Cancer

By
Sy Mukherjee
Sy Mukherjee
Down Arrow Button Icon
By
Sy Mukherjee
Sy Mukherjee
Down Arrow Button Icon
July 12, 2018, 6:05 PM ET

CRISPR is by all accounts a fascinating technology. Its headline feature is that it can literally be used to slice, dice, and otherwise manipulate the body’s genetic code—functions that could carry staggering implications for treating everything from inherited disorders to cancer to HIV/AIDS one day.

Now, new (though extremely early) research suggests that CRISPR could be used to vastly improve upon a new form of cancer-fighting methods that turn the body’s own immune T cells into specially targeted killers that attack cancerous tissue.

If this technique sounds generally familiar, it’s because a pair of therapies from drug giants Novartis and Gilead called Kymriah and Yescarta, part of a new class known as CAR-T, were approved by the Food and Drug Administration (FDA) last year. Those treatments involve extracting immune T cells, re-engineering them in a lab to home in on cancers, multiplying them, and then inserting them back into patients’ bodies. The results can be staggering for certain hard-to-treat blood cancer patients.

But that T cell re-engineering process is stymied by the need to use “viral vectors”—an expensive and expansive biological constraint that, simply put, slows down the ability to insert beneficial DNA into an immune cell and the amount of genomic data that can be repurposed for cancer-killing purposes. The experimental technique being tested by UCLA and UCSF scientists (backed by the Parker Institute for Cancer Immunotherapy, established by tech entrepreneur and philanthropist Sean Parker) could theoretically bypass those constraints and create a cheaper, faster, and more efficient process for manufacturing cancer hunters out of a patient’s own biology by modifying certain cells’ building blocks.

And it has implications beyond cancer, too. The “cut and paste” system uses an electrical field to facilitate the rapid removal and replacement of DNA, which could eventually help fight infectious, hereditary, and other diseases as well.

“This is a rapid, flexible method that can be used to alter, enhance, and reprogram T cells so we can give them the specificity we want to destroy cancer, recognize infections, or tamp down the excessive immune response seen in autoimmune disease,” said UCSF’s Alex Marson, senior author of the new study, in a statement. “Now we’re off to the races on all these fronts.”

Subscribe to Brainstorm Health Daily, our newsletter about exciting health innovations.

About the Author
By Sy Mukherjee
See full bioRight Arrow Button Icon
Rankings
  • 100 Best Companies
  • Coins2Day 500
  • Global 500
  • Coins2Day 500 Europe
  • Most Powerful Women
  • Future 50
  • World’s Most Admired Companies
  • See All Rankings
Sections
  • Finance
  • Leadership
  • Success
  • Tech
  • Asia
  • Europe
  • Environment
  • Coins2Day Crypto
  • Health
  • Retail
  • Lifestyle
  • Politics
  • Newsletters
  • Magazine
  • Features
  • Commentary
  • Mpw
  • CEO Initiative
  • Conferences
  • Personal Finance
  • Education
Customer Support
  • Frequently Asked Questions
  • Customer Service Portal
  • Privacy Policy
  • Terms Of Use
  • Single Issues For Purchase
  • International Print
Commercial Services
  • Advertising
  • Coins2Day Brand Studio
  • Coins2Day Analytics
  • Coins2Day Conferences
  • Business Development
About Us
  • About Us
  • Editorial Calendar
  • Press Center
  • Work At Coins2Day
  • Diversity And Inclusion
  • Terms And Conditions
  • Site Map

© 2025 Coins2Day Media IP Limited. All Rights Reserved. Use of this site constitutes acceptance of our Terms of Use and Privacy Policy | CA Notice at Collection and Privacy Notice | Do Not Sell/Share My Personal Information
FORTUNE is a trademark of Coins2Day Media IP Limited, registered in the U.S. and other countries. FORTUNE may receive compensation for some links to products and services on this website. Offers may be subject to change without notice.